The 10 big lighting trends for 2019

WHAT'S IN store for the lighting industry in 2019?

The big mega trends of recent years will continue of course, as digital disruption will challenge some business models and create opportunities for others, especially those who can make digital experiences a seamless and positive customer experience. Here’s our take on 10 trends we expect to see in the coming 12 months.

 

The supply chain will breakdown

The client-specifier-manufacturer-wholesaler-contractor supply chain used to be understood by everybody. But with FMs buying from Amazon and margin-chasing contractors bullying manufacturers for rebates, the supply chain is getting more twisted out of shape than a Labour spokesperson explaining the party’s policy on Brexit.

Power Line Communication will go mainstream

Power line communication – a sophisticated reprisal of the ‘mains borne’ signalling of the 1970s – has been the unexpected tech trend in lighting control in recent years. It beats wireless on many levels and is getting adopted by big players such as shopping mall giant Intu and automotive manufacturer Volvo.

Consolidation will accelerate

After the companies jump a few pesky regulatory hurdles this month, iGuzzini will join the Fagerhult Group as the jewel in the crown of its recent acquisitions. While it’s certainly one of the most eye-catching takeovers in the industry it won’t be the last. Driven by falling luminaire prices, consolidation will accelerate this year.

 

Bluetooth Mesh will gain traction

Bluetooth is the new big beast in the lighting controls world and its mesh technology brings simple wireless control to large installations. The familiarity of Bluetooth, the marketing muscle behind the brand and the open protocol nature of the technology will mean its entry into the mainstream lighting is a smooth one.

VR will arrive as a design tool

Virtual reality games may have enlivened your Christmas break but expect 2019 to be the year that they have a serious impact in lighting design. The big architectural practices are already using the tool to get clients excited and Signify - formerly Philips – is investing heavily in the technology as a design and marketing tool.

 Visual comfort will move up the agenda

The right to experience artificial lighting without nasties such as glare and flicker has taken a back seat in recent years as we’ve embraced the stunning energy saving possibilities of LEDs. But expect visual comfort to make a comeback with increasing demand for warm colour temperatures and high CRIs.

Smart hubs will be cut out

The tangle of twinkling ‘smart hubs’ and ‘intelligent bridges’ you need to get your lamps connected to the internet will become a thing of the past. Led by GE’s release of its C by GE light bulbs and C-Start switches this year, lighting will increasingly connect directly to Alexa, Google Assistant, Apple’s HomeKit and even Siri.

 Self-learning control will arrive

Led by the stunning success of Nest’s digital thermostats which learn about a user’s habits over time and anticipate changes, intuitive control will begin to arrive in the lighting world. Helvar is first out of the blocks with its Active+ system, but a flurry of patent applications in recent months show entrepreneurs are betting its the next big thing in lighting.

1970s design will return

The feminine palette of chalky pinks, brass and er, flamingos is so over, the interior fashionistas tell us. The big trend in interiors is a return to the 1970s but this time with better materiality and softer colours. Expect product designers to blow the dust off Concord and iGuzzini catalogues from the era in the search for inspiration

Modular design will spread

LED luminaire makers can’t believe their luck. They’ve got away with integral products where extracting a failed driver or light source is harder than getting compensation from Ryanair. But European chiefs are on their tail. Expect Eco Design legislation to tighten and put pressure on manufacturers to have deconstruct-able luminaires.

Halogen lighting heads into the sunset while LEDs are on the rise

From Sept. 1 this year, almost all halogen lighting will be phased out in Europe to make way for more efficient and cost-effective solutions. This is the last of a number of European Union (EU) Eco-Design measures, which were first put into place in 2009 to bring the industry closer to meeting targets set out under the energy strategy for 2020.

The incandescent light bulb has existed for over 130 years; however, about 90% of the energy it produces is in the form of heat as opposed to light, making it hugely inefficient. That translates into 75% more energy used than LED alternatives. Therefore, the switch from incandescent to LED is a vital business decision, and in light of the impending halogen phase-out across the EUxbqtdzrbtvavsddwcdbsdvfcdx, it demands immediate attention.

The European Union has long been committed to fighting climate change and in 2009 it announced bold plans to reduce energy use by 20% by 2020. With 39% of a commercial property’s electricity consumed by lighting, according to the US Department of Energy, and 50% of lighting deemed highly inefficient, it’s easy to understand why this energy source has such an important role to play. What’s more, the Committee of Climate Change has reported that energy companies are predicted to drive up bills by 30% by 2030 in response to the European Commission’s drive for energy-efficient operations.

Version:1.0 StartHTML:000000314 EndHTML:000290936 StartFragment:000286127 EndFragment:000290802 StartSelection:000286127 EndSelection:000290798 SourceURL:https://www.ledsmagazine.com/articles/print/volume-15/issue-8/features/last-word/halogen-lighting-heads-into-the-sunset-while-leds-are-on-the-rise.html

Between 2009 and 2012, EU Eco-Design measures saw the gradual removal of clear incandescent lamps from the market, as well as those lamps previously defined as special purpose (incandescent rough service, high/low temperature, and clear glass decorative filament). The use of halogen directional mains‐voltage and low‐voltage lamps (GU10, PAR, R-type) was then outlawed in 2016.

The final deadline designed to bring the industry closer to meeting the energy strategy came into play on Sept. 1. This will see mains-voltage non-directional halogen lamps banned, marking the phasing out of almost all halogen lighting. Refrigerator and oven lamps, halogen capsules, linear R7s bulbs, and low-voltage halogen lamps such as MR16 will remain available.

According to the European Commission, in 2018 the switch to energy-efficient lamps will result in total annual energy savings that match the annual electricity consumption of the whole of Portugal (48.0 TWh of electricity). This means a savings of 15.2 million metric tonnes of CO2 emissions by 2025.

Replacing halogen with LED is not a new development. Many users have already benefited from upgrading their lighting. However, LEDs still only make up 10% of lighting systems globally due to the legacy of incandescent and halogen, leaving room for change. With that said, LED is predicted to become the predominant source of lighting over the next decade.

In addition to being significantly more energy efficient, LED lamps offer a considerably longer service life. The average lifespan of LED is said to be approximately 50,000 hr compared to incandescent (1000 hr), halogen (2000 hr), and compact fluorescent lamps (15,000 hr). So while many have bemoaned the cost of LEDs, given their lower energy consumption and longer lifetime, there is no debating that these lamps represent a smart investment.

LEDs have been criticized for limited diversity of color temperatures. Past LED lamps produced cold, white light that failed to mimic the warmth and ambience of halogen and incandescent alternatives.

Now, the latest leading LED solutions are capable of replicating the charm and aesthetic of traditional halogen lamps by offering a range of warm color temperatures to create soft, relaxed, and elegant atmospheres in residential or hospitality applications.

Newer-generation LED lamps also come with high-performance glare-control optics, improving the delivery of light and helping to increase productivity and wellness in offices. And leading ranges come with enhanced flexibility — a key consideration particularly for retail settings. Many lamps feature adjustable beam angles to provide high-quality light that draws attention to specific areas in stores to boost sales. They also allow for accommodating future changes to store layout and design trends.

The drive toward more energy-efficient lighting has been met with apprehension by some. But the latest LED developments promise to ensure that end users can still achieve the look and feel of halogen while realizing the long-term value that LED has to offer.

SIMON REED is general manager of the Global FMG business unit for Sylvania. His professional career extends across well-known telecommunications and lighting businessess, including Alcatel-Lucent and Eaton's former Cooper Lighting business. He joined Havells Sylvania in the UK in 2014 as vice president of sales & marketing  - EMEA and later became VP of the EMEA region for Feilo Sylvania after the parent, Shanghai Feilo Acoustics Co., Ltd. (FACs), acquired the business from Havells Holdings Limited. Sylvania is the lead brand of Feilo's Sylvania Lighting group, which provides consumer, professional, and architectural lighting products.

Report: IoT Vertical Standards to Emerge and Then Merge

Written by Courtney Bjorlin

  • 13 Aug 2018

    According to research from Georgia Tech, IoT vertical ecosystems -- in which verticals develop their own standards but later combine with others’ -- and design thinking are keys to IoT success.

IoT will grow in industry-specific “clusters,” each adopting vertical standards and, eventually, the separate spheres will seek to talk to one another and merge, according to new research from Georgia Tech.

Defining the IoT’s “end game as the interconnection of intelligent things,” Alain Louchez, the co-founder and managing director of The Georgia Institute of Technology’s Center for the Development and Application of Internet of Things Technologies (CDAIT), said industries such as agriculturehealth care and manufacturing will each act as their own IoT ecosystem, smoothly functioning with their own standards. At some point, the different IoT vertical clusters will seek to share information and even combine, with standards and regulation emerging to enhance their ability to work together on a common platform, according to the whitepaper.

Louchez likened it to the development of the U.S. electrical grid, where small clusters were using a standards approach and continued to combine until the separate grids communicated with each other.

“We’re still at the very beginning of something huge that will unfold over decades,” Louchez said.

Defining IoT as a “metaphor that captures something big that’s going on,” Louchez and CDAIT researchers and members recently released the comprehensive white paper, “Driving New Modes of IoT-Facilitated Citizen/User Engagement.” The paper, intended to educate and spur conversation across academia, industry and government on IoT technologies, defines IoT, provides a list of current standards bodies and security resources, and examines how connected technologies can play out in a user-centric manner in the context of smart cities.

CDAIT brings together academia and industry, with working groups led by the leaders of global companies such as Honeywell, Coca-Cola and Georgia Pacific. Those working groups aim to tackle the main dimensions of IoT, including education and training; startups; IoT thought leadership; security and privacy; and standards, including those for IoT verticals, Louchez said.

In this paper, researchers look at the potential for IoT in cities, examining IoT use cases and their results in places like Barcelona, Los Angeles and Tokyo.

They call special attention to the impact of design thinking on smart city projects.

Developing user-centric solutions will be crucial to the proliferation of the IoT, the researchers contend. As such, they recommend leveraging design thinking, for both its principles and supporting methodologies. Agile development processes will help cities, for instance, test and launch small projects, and evolve them quickly with user needs, while the focus on empathy ensures that the user is intrinsic to the development process.

“It has to be focused on the user. You cannot be successful in the IoT if you center whatever you’re doing on technology,” Louchez said. “You have to include the human dimension.”

To help smart cities adopt this approach, researchers created a model – EPIC, short for Ethics, Profit (economic and social), Intimacy and Connectivity — to review the opportunity and impact of investing in IoT. EPIC screens the IoT effort through the four variables for which it was named. Cities can use EPIC as a grid and take the project through the criteria to see how it fares, Louchez said.

In all, the team hopes to foster a dialogue around issues crucial for IoT proliferation and success, along with the understanding that it will be a long process.

“IoT is not a technology. It’s just an outcome brought about by many, many moving parts, many IoT-enabling technologies,” Louchez said.

5 Common Questions About the Industrial Internet of Things (IIoT)

New to IoT? Here are answers to some of the most common IIoT questions from industry leader Digital Lumens

What do a robotic vacuum cleaner and industrial LED fixtures with embedded sensors have in common? Both operate using the Internet of Things (IoT), a revolutionary network of connected objects driven by sensors which output data into corresponding software applications. Beyond the consumer IoT (wearable fitness trackers, automated home thermostats, and more) is the IoT’s place in the industrial business world called the Industrial Internet of Things (IIoT). Manufacturers and other standard production environments are set to adopt IIoT technology at massive rates, with one report forecasting manufacturing to make up one-fourth of the total IoT market by 2020.

Even though the IIoT can greatly improve your operational efficiency while reducing overhead costs, many decision makers have questions about the available technology, how to introduce it, and how it can benefit their business.

Here are answers to some of the most common IIoT questions:

1. What is a Smart Building?

A smart building is a facility containing sensors throughout which connect to a secure and shared network (the IIoT) for the purpose of generating data insights to inform operational improvements. The sensors monitor specific functions like lighting usage, power metering, temperature and relative humidity levels, activity level around specific assets and predictive maintenance on machinery. The centralized server or cloud-based platform stores, analyzes and, sends the data to a user-friendly software application where facility managers can view a range of historical and real-time data points to maximize energy savings and efficiency.

With a smart building system, organizations save manpower through the automation of manual tasks like walking through a facility with a clipboard to write down environmental conditions. IIoT connectivity also allows facility managers to evaluate insights not generated by manual tracking like employee foot traffic patterns or the best locations to store inventory which can inform lighting usage and make working processes more productive.

2. What are Best Practices for Introducing Smart Building and IIoT Solutions?

With so much potential opportunity, it can be difficult to know where to start with an IIoT implementation. The best approach is for facility managers, sustainability managers, or EHS managers to identify a small pilot project that will demonstrate the effectiveness of one IIoT solution such as, energy savings, facility-monitoring or asset tracking. Many pilot projects focus on sensor-driven lighting because it yields tangible results in a relatively short time period. Whether you have a food and beverage processing plant, warehouse or manufacturing facility, intelligent lighting can produce optimal results in a pilot project.

For those spearheading a pilot project, it is crucial to set and meet specific goals in order to demonstrate the value and potential of smart building technology. For example, if testing the effectiveness of sensor-driven LED lighting coupled with a software application lighting control like SiteWorx Tune over a manufacturing production line, some key measurements to note before and after the pilot test are:

  • Energy savings

  • Energy usage

  • Productivity levels

Based on facility specifications, smart building solution providers can guide you in launching and setting goals to maximize results of your pilot test.

3. Why is Lighting a Key Part of the IIoT?

The implementation of industrial LED lighting fixtures with embedded sensors is a common first step for many enterprises investing in IIoT technology. These sensor-laden lighting fixtures working in tandem with software application controls often yield the quickest return on your investment. Given that they are evenly spread out across a facility, the IIoT-enabled lighting fixtures are the ideal source for instrumenting a broader smart building network that can easily expand to non-lighting applications like power monitoring, machine usage and, facility environmental conditions.

If a full lighting upgrade isn’t in the plans, your existing light fixtures can be connected to the IIoT for a fraction of the costs. Digital Lighting Agents (DLAs) contain smart sensors, affix to virtually any LED light fixture and, deliver actionable facility data to smart building software applications.

4. How Do I Use the Data Generated From the IIoT?

Your IIoT solution is set up. The sensors are deployed and communicating their findings to a software application you check multiple times a day on your desktop and smartphone. How can all of the data be used to improve your facility and operations?

It depends on how you plan to use the data. McKinsey reported:

“Currently, most IoT data are not used. For example, on an oil rig that has 30,000 sensors, only 1 percent of the data are examined. That’s because this information is used mostly to detect and control anomalies—not for optimization and prediction, which provide the greatest value.”

If your main goal is to spot potential problems, it’s possible you may not need to look at all of the data insights. With optimization of processes and facilities, the data often requires a closer look.

While there will be a lot of data, smart building solutions software like SiteWorx, make it a lot easier to understand and leverage for facility improvements. On the SiteWorx dashboard, there are options to analyze real-time data, compare to current findings to historical data and view results in a variety of formats including charts, bar graphs, line graphs and diagrams. The software is a simple and intuitive tool meant for facility and operations professionals to spot trends and anomalies. Of course, it is important to remember data analyzation basics like comparing similar data sets or apples to apples, normalizing data and getting help from analysts or consultants for large projects like database restructuring.

5. Can My Business Afford to Implement an IIoT System?

Many companies operate on tight budgets in order to maximize profit margins within a competitive market spaces. Industrial lighting solutions are a good starting point thanks to their rapid payback.

Smart lighting software applications like SiteWorx Tune working with with sensor-driven industrial LED fixtures can yield up to 90% in energy savings. Using lighting strategies built into the software application such as dimming, daylight harvesting, and off-hour setback are large contributors to energy savings.

Intelligent lighting isn’t the only way the IIoT can help businesses justify the technology investment. Facility-wide monitoring functions including temperature and relative humidity readings, power load usage, and occupancy patterns allow managers to check conditions and activity 24 hours a day. This around the clock access allows operations managers to proactively prevent events like a burst pipe in a low-touch auxiliary room, temperatures falling below a regulatory level, and, machines running at a high power and wasting energy. The savings from protecting your facility and product from these events can be significant.

The IIoT offers unprecedented opportunity for industrial businesses. As hype builds and competitors adopt the technology, it is important to educate yourself on how it can benefit your organization.

Why LED Light Technology?

Since 2006, LED Light Technology has provided professional LED lighting services for industrial, commercial and office-based clients. LED Light Technology founders have spent their careers in the general lighting and LED integration. Collectively our executive team has over 70 years in the lighting business coming from companies such as GE, Philips and Cree.  We have a vast amount of experience and knowledge of both traditional and LED lighting products and applications.  LED Light Technology is a certified women-owned company supporting corporate diversity programs.

As lighting professionals, it is our responsibility to inform our customers of ideal methods to implementing LEDs into their facilities. It is in our best interest to bring you the most cost-effective solution while meeting your primary objectives of improving the quality and performance for your lighting systems.

We offer a complete assortment of LED for all lighting applications.  Our team conducts energy audits to determine the most cost-effective solution for each project location. The audit results in a financial analysis showing detailed owning and operating cost savings/avoidance including all benefits realized by converting to maintenance-free LED lighting products.

We are focused on fortifying our clients’ balance sheet by reducing facility energy consumption and HVAC load while eliminating time and maintenance associated with traditional lighting systems. We offer environmentally friendly LED bulbs, retrofit kits and new fixtures for most every lighting application.

LED Light Technology supplies a full range of traditional and LED bulbs and fixtures including recognized brands such as Philips, GE, CREE, A-Line, Brownlee, Day-Brite, Digital Lumens, Green Creative, Hubble, Levition, Liteline, Lighting Science Group, LSI, Lunera, Maxlite, MSI, Revolt Lighting, TCP, Terralux and WattStopper…as well as our house brand…LED Light Technology.

Our professional lighting experts will perform a complimentary site survey of your facility or produce the financial analysis and conversion recommendations if provided with a PDF or DWG drawing of the facility and a Lighting Fixture Schedule.

In addition to LED Lighting conversions, we offer complete Energy Services to address every aspect of your energy needs.

 

The intelligence features added to the LED lighting and control systems have reduced owning & operating costs by 97%.

 

It’s easy and affordable to convert your lighting systems to LED.

DOE Report on Energy Reporting Capability of PoE Connected Lighting Systems

DOE Publishes Report on the Energy Reporting Capability of PoE Connected Lighting Systems

DOE has published the first part of a study to explore the energy reporting capability of commercially marketed Power over Ethernet (PoE) connected lighting systems. The new report provides a brief background on the development of the various PoE technologies, ranging from standards-based to proprietary, and illustrates the convergence of PoE power sourcing capabilities and LED luminaire power requirements. It then classifies PoE system devices in relationship to how they’re used in systems — introducing clarifying terminology as needed — and briefly describes different PoE system architectures implemented by various lighting manufacturers. A discussion of existing standards and specifications that address energy reporting is provided, and existing test setups and methods germane to characterizing PoE system energy reporting performance are reviewed.

Connected lighting systems that can report their own energy consumption can deliver increased energy savings over conventional lighting solutions by facilitating data-driven energy management. PoE technology — in which a single Ethernet cable is used to both provide low-voltage DC power and enable network communication — has the potential to bring this capability to mainstream lighting applications, and has become increasingly viable for LED lighting.

For a closer look at the findings, download the full report.

Best regards,
Jim Brodrick

— Jim Brodrick

Del Monte Fresh Produce, N.A. Inc. Installs Intelligent Energy Efficient LED Lighting

LED Light Technology provided Del Monte an innovative and intelligent LED lighting system at their Galveston Port Facility. 

Similar facilities that install LED Light Technology’s Intelligent LED Lighting System will obtain an estimated $132,225.00 in annual energy savings, which equates to removing 68 cars from the road and planting 9,213 trees every year.  Candidates for this system will recoup their investment within one to two years and will benefit from years of maintenance-free use and measureable validation of their investment.

Intelligent 80 Watt LED High Bay complete with wireless controllable software management system. This 80W fixture replaced a traditional 400W HID High Bay.
We want to thank you for all yours and Amy’s efforts on this project and we are very happy with the performance of the product. Being able to monitor the performance and cost savings using the software system is truly amazing and takes facility lighting to a completely differently level. We look forward to the higher performance and lower costs that LED’s provide and believe we made the right decision when we chose your company to make the conversion.
— Joe Wiley, Port Manager, Galveston, TX